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Summary. The kinetic behavior of tracer flows across epithelial membranes is examined 
and attention is called to the conditions under which unidirectional tracer flows may be 
described by first order rate equations. It is shown that the first order nature of the tracer 
rate equations when combined with simple thermodynamic constraints on tracer flow yields 
a relation between the ratio of the unidirectional rate coefficients and thermodynamic driving 
forces. The form of this relation is examined for the case of simple diffusion and in the presence 
of coupled processes. 

Two phenomenological  approaches have been particularly useful in 

characterizing the movement  of matter across epithelial membranes. One, 

the thermodynamic approach, considers net flows in relation to thermo- 

dynamic driving forces. The other, referred to here as the kinetic approach, 
aims to characterize transepithelial t ransport  processes by means of uni- 

directional rate coefficients derived from measurements of radioactive 

isotope (tracer) flow. The purpose of this paper is to show that a simple 

combinat ion of these two phenomenological  systems leads to a useful, 

global relation between unidirectional rate coefficients and thermodynamic 
driving forces, namely the well-known "flux-ratio equat ion" first formu- 
lated by Ussing (1949). 1 

The Thermodynamic Approach 

The thermodynamic approach to membrane transport  is, perhaps, 

best exemplified by the work of Kedem and Katchalsky (1958, 1962). 
They employed the formalism of irreversible thermodynamics to obtain 

1 A preliminary report of this work was presented at the 1975 meeting of the Biophysical 
Society (Dawson, 1975). 
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a phenomenological description of the relation between the flows and 
forces which interact to produce observable membrane transport phenom- 
ena. One particularly useful result of this work was the introduction by 
Kedem (1961) of a general expression which relates the net flow of some 
species, i, across a membrane to three classes of thermodynamic forces, i.e.: 

Ji= ~ (Afii +j~_lRJj+ RirJr). (1) 

j:l=i 

Where Ji is the net flow of i and A ~ is the difference in electrochemical 
potential for i across the membrane, the so-called "conjugate force". Jj 
represents other transmembrane flows of matter and Jr represents the flow 
of a chemical reaction within the membrane. The R's are the phenom- 
enological coefficients. This perspective is particularly useful in studies 
of transport by isolated epithelial sheets where A~i may be conveniently 
reduced to zero and the possible dependence of Ji on coupled processes 
thereby revealed. 

The Kinetic Approach 

The characterization of epithelial transport processes by steady-flow, 
isotopic rate coefficients is closely related to the broad area of "compart- 
mental analysis". Since the assumptions inherent in the kinetic approach 
have considerable bearing on the principal result of this paper, we consider 
them in some detail. To begin let us examine the experimental setting 
in which isotopic rate coefficients are obtained by the measurement of 
so-called "unidirectional" isotope flows. Consider a membrane of arbitrary 
geometry which separates two solutions of known composition. The mem- 
brane surfaces may be bounded by unstirred layers, but there must exist 
well-stirred regions of bulk solution on either side where it is possible 
to define the concentrations of the constituents of the solution and the 
electrical potential difference across the membrane. For the purpose of 
simplicity, we assume that temperature and pressure are uniform through- 
out the system and that the net volume flow is negligible. 

To obtain the steady-flow, isotopic rate coefficient for a substance, 
i, a quantity of a radioactive isotope of i, i*, is added to the solution 
bathing side 1 of the membrane, the "hot side". Sampling of side 2 is 
restricted to times greater than that required to reach steady-flow and 
less than that required to accumulate isotope to a degree sufficient to 
produce an appreciable "back-flux". During this time the isotope flow 
from side 1 to side 2 is, for practical purposes, unidirectional. 
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The operational definition of the unidirectional flux of tracer from 
side 1 to side 2 is given by: 

J*2 - C* (2) - C* (1)/(t2 - tl) (A), 

where, J1"2 is the unidirectional tracer flow from side 1 to side 2, C~ (1) 
is the concentration of tracer on the cold side in counts per min per ml 
at time q,  C~ (2) is the concentration of tracer on the cold side at time t2, 
and A is the area of the membrane. Experimental design is typically such 
that the concentration of tracer on the hot side does not change appreciably 
during the course of the "tracer flow measurement and the cold side 
represents an infinite sink for tracer flow. Accordingly, we define the 
unidirectional rate coefficients for tracer flow, K* 2 and K~I as: 

K]2 =J~2/C~ K* 1 =J~*/C*, (2) 

where J1"2 and J~  are unidirectional tracer flows measured under con- 
ditions of steady tracer flow and C* and C* are the concentrations of 
tracer on the respective hot sides. 

For the tracer rate coefficient to be a useful phenomenological de- 
scription of the properties of the membrane, two conditions must obtain: 

(a) The properties of the membrane must be time invariant. 
(b) The addition of tracer to the system must not alter the properties 

of the membrane. 
Clearly, if the tracer rate coefficient is to be a measure of the properties 

of the membrane, these properties should not change appreciably during 
the period of time required to measure tracer flow. This condition is 
commonly expressed as the requirement that the system be in a "steady- 
state" (Solomon, 1960). Practically, this means that the composition of 
the bathing solutions, the transmural electrical potential and the isotopic 
rate coefficients do not vary with time or, if so, only very slowly with 
regard to the intersample interval, t 2 - t~ .  In practice this condition is 
relatively easily met using a variety of isolated epithelial preparations. 

The properties of the membrane which are reflected in the tracer rate 
coefficient may be a strong function of the total concentration of the 
abundant isotope. We assume, however, that tracer may be added to the 
system in such a minute quantity on a molar basis that the properties of 
the membrane remain virtually unchanged. Practically, this means that 
we may add many "counts per minute"  to the hot side by adding a 
negligible number of moles of i*. A large gradient of "counts"  may, 
therefore, be introduced without disturbing the steady-state. The tracer 
rate coefficient thus provides a phenomenological measure of the prop- 
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erties of the membrane, and we assume that tracer may be introduced 
into the system in quantities which are so small that the tracer rate coef- 
ficient is independent of tracer concentration. 

An important consequence of these assumptions is that Eq. (2) con- 
stitutes true first order rate equations for tracer flow. Inasmuch as the 
coefficients K*2 and K*I relate tracer flow, J*, to tracer concentration, 
C*, they are constants. They remain constant as long as the properties 
of the membrane do not change. This is simply to assert, as pointed out 
by Robertson (1957) and Solomon (1960) that the rate equations for tracer 
movement are, in general, first order regardless of the actual kinetic order 
of the process being studied. This assumption has been examined in detail 
for chemical reaction kinetics by Fleck (1972). Thus, although the rate 
coefficients for tracer movement may depend on the concentration of 
the abundant  isotope and the electrical potential difference, as well as 
other variables, the tracer rate coefficients will not depend on tracer con- 
centrations. Ussing (1952) recognized that tracers which behave according 
to these assumptions can provide "new information" about the properties 
of a membrane. This new information arises because the properties may 
be measured by introducing a vanishingly small perturbation into the 
system. 

The Flux Ratio for Simple Diffusion 

In his classic paper Ussing (1949) proposed that transport by simple 
diffusion could be distinguished from "active transport" by examining 
the ratio of the unidirectional tracer fluxes across a membrane. He demon- 
strated that for a substance which moves by simple diffusion, the steady- 
state tracer flux ratio is given by: 

zF 
J*2/J~l =(7* C*/~ C~) exp { -~- (~ l l -~2)} ,  (3) 

where J*2, J*l, C*, C~ are unidirectional tracer flows and tracer con- 
centrations as defined previously and 7~ and 73 are the activity coefficients 
for the tracer, z, F, R, T have their usual significance and ~ 1 - ~ 2  is the 
electrical potential difference across the membrane. Ussing developed this 
useful relation by assuming that the diffusional flow of a tracer ion at 
any point in the membrane could be described by the Nernst-Planck 
equation. By taking the ratio of the unidirectional tracer fluxes he was 
able to eliminate all terms which depend on the physical properties of 
the membrane. Integrating this ratio across the membrane for steady- 
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state tracer flow, he  obtained the well known result that, for simple 
diffusional flow, the tracer flux ratio depends only on the activities of 
tracer in the bathing solutions and the electrical potential difference across 
the membrane. More recently, several authors have examined in detail 
the theoretical foundations of the flux-ratio equation in an effort to clearly 
define the necessary assumptions about tracer movement, and to generalize 
the flux-ratio equation to include the effects of coupled processes and 
membrane inhomogeneity (Hoshiko & Lindley, 1964; Kedem & Essig, 
1965; Schwartz, 1971). These treatments, however, also proceed from a 
local description of flows and forces to a global flux-ratio equation. It is 
the purpose of this communication to demonstrate that the flux-ratio 
equation can be derived from a simple combination of the thermodynamic 
and kinetic approaches to transport without resort to a local description 
of flow. 

Consider again the membrane of arbitrary geometry separating two 
solutions. The movement of a substance, i, across the membrane may 
be characterized by the tracer rate coefficients given in Eq. (2). In accord- 
ance with the previous discussion, we assume that these constitute first 
order equations for tracer flow, i.e., that the rate coefficients are independent 
of tracer concentrations. In addition, it follows that the ratio K12/Kel* * 
does not depend on the ratio C1/C2. 

To complete the development of the flux-ratio equation it is necessary 
to specify simple diffusion by some phenomenologic criterion. It is only 
necessary to stipulate that the flow of tracer is not coupled to any other 
flow of matter across the membrane (including the abundant  isotope of 
the tracer species) or to any chemical reaction in the membrane. Specifi- 
cally: in any particular stationary state of the system, regardless of the 
distribution of the abundant  isotope, it must be possible for the tracer 
to attain thermodynamic equilibrium. At tracer equilibrium the electro- 
chemical potential difference for the tracer, A~, ,  must be zero and: 

(7"C*/~* * { z F } C2)equn. = exp - ~ -  (02 - ~bl) �9 (4) 

Inserting this relation into the expression for the ratio of the rate coef- 
ficients, KI2/K2~ , and noting that at equilibrium the unidirectional tracer 
fluxes are equal, we obtain for the ratio of the tracer rate coefficients 
at tracer equilibrium: 

(K12/K20equil. = (7*/7*) exp ~ -  (~ba - 02) - (5) 
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Eq. (5) constitutes a relation between the tracer rate coefficients at tracer 
equilibrium. Clearly, it is not possible to measure the rate coefficients at 
tracer equilibrium. Our assumptions about tracer behavior, however, 

gr qr require that the tracer rate coefficients and their ratio, K l z / K 2 1  , be in- 
dependent of the distribution of the tracer, C 1/C 2. Thus, rate coefficients 
measured in unidirectional flux experiments, i.e., with the tracer far from 
equilibrium, must also conform to this relation. Eq. (5) must apply to 
all tracer states and constitutes, therefore, a general relation between 
tracer rate coefficients for simple diffusional movement. Taking the ratio 
of the unidirectional tracer fluxes and inserting Eq. (4), we obtain the 
well-known flux ratio equation in the form originally given by Ussing 
(1949). 

** I zF } 
J~2/J~l = (71 C1/72 C*) exp ~ -  (01 - ~/2) " (6) 

Thus, from the phenomenologic viewpoint the flux-ratio equation for 
simple diffusional flow is a result of the general first order nature of 
tracer rate equations and the stipulation that, if the tracer moves by simple 
diffusion, it must be able to attain thermodynamic equilibrium. Eq. (6) 
does not constitute the most generally useful form of the flux ratio equation 
because it contains the terms 7~' and 7' ,  the activity coefficients for the 
tracer. As indicated by Ussing (1949) this equation is most useful when 
both sides of the membrane are bathed by identical solutions, in which 
case the ratio of the tracer activity coefficients would be unity. Eq. (6) 
can be cast in a somewhat more general form by introducing the postulate 
of "kinetic indistinguishability", i.e., by assuming that the tracer and the 
abundant isotope are identical in all thermodynamic and kinetic prop- 
erties. With this assumption we write for the tracer activity coefficients: 

7~" =71 =al/C1 7* =72=a2/C2, (7) 

where 71 and 7z, ax and a2, C 1 and C2 represent the activity coefficient, 
the activity and the concentration of the abundant isotope of the tracer 
species on side 1 and side 2 of the membrane. Inserting these relations 
into Eq. (6) we obtain the practical form of the flux-ratio equation: 

J~2/pl al exp { z F t 
Jft/P2 - a2 ~ (01 - tP2) , (8) 

where Pl and P2 are the specific activities of the tracer on side 1 and 
side 2, i.e. 

Pl = C~/C~ P2 = C*/C2. (9) 



Tracer  Flux Ratios 357 

The Flux Ratio in the Presence of Coupled Processes 

This phenomenologic approach to tracer behavior can be extended to 
"coupled transport" systems by noting that, in general, the flow of tracer 
may be coupled to other transmembrane flows of matter or to chemical 
reactions in the membrane. Making use of Eq. (1) we can express the net 
flow of tracer in general as: 

J*et= - A ~ , / R , -  ~ R,kJk/R,, (10) k-1 
where R,  and R,k are phenomenological coefficients and Jk is the net 
flow of the k-th species. The summation from 1 to n is taken to include 
all other flows of matter across the membrane (including the abundant 
isotope) and the flows of any chemical reactions linked to J*. At true 
tracer "steady-state", i.e., J*et= 0, we obtain for the electrochemical poten- 
tial difference of the tracer: 

An,= - ~ R,kJk. (11) 
k = l  

With Eq. (2) this yields for the ratio of the tracer rate coefficients: 

n 

K12/K21* * = (7"/~) exp RT 

Again, noting that K*2 and K*I are independent of C~" and C* we insert 
F,q. (12) into the definition for the flux ratio and obtain, with the assumption 
of kinetic indistinguishability, the flux ratio in the presence of coupled 
processes: 

F { Z (i[ll -@2)-]- ~lR,kJk } 
J*2/P~_ am exp = . (13) 
J~I/Pz a2 RT 

This result is formally identical to that obtained by Kedem and Essig 
(1965), although it should be noted that the precise identification of the 
phenomenological coefficients will depend on the nature of the coupled 
processes and the presence or absence of parallel paths for transmural 
ion flow. 

Hoshiko and Lindley (1970) have stressed the need for macroscopic 
specification of ideal tracer behavior. The present development provides 
a simple, phenomenological approach to the behavior of tracers using 
only the postulates of compartmental analysis and thermodynamics. The 
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flux-ratio equa t ion  emerges f rom a cons idera t ion  of  the f irst-order na ture  

of the tracer rate coefficient and  the t h e r m o d y n a m i c  constra ints  on t racer  

d is t r ibut ion in the presence and  absence of coupled  processes.  

It is a pleasure to acknowledge stimulating discussion with Drs. C.A.M. Hogben and 
C.S. Patlak which greatly enhanced my perception of this problem. The final form of the 
manuscript benefited from the critical comments of Drs. Q. A1-Awqati and J.R. Menninger. 
I am especially grateful to referee ~ 1 for this journal who pointed out the need to consider 
the activity coefficients. 
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